Concatenation of languages

This is an operation on string that allows us to construct languages.

Let L_1 , L_2 are two formal languages over an alphabet Σ , the $\$ concatenation of L_1 with L_2 as the following:

 $L_3 = L_1.L_2 = \{ x.y / x \in L_1 , y \in L_2 \}$

Example1:

Let $\sum = \{0, 1\}$ L1 = $\{01, 0\}$ L2 = $\{\epsilon, 0, 10\}$ L3 = L2.L1 = $\{01, 0, 001, 00, 1001, 100\}$ L1.L2 = ?

Example2:

Let $\sum = \{a, b, \dots, z\}$ L1 = {in, out} L2 = {come, low, door } L3 = L1.L2 = { income, inlow, indoor, outcome, outlow, outdoor }

Power of language: -

 $L^k = L.L.L.L...L$, where L an language and $k \ge 0$

(i.e the set of all string that can be obtained by concatenating k elements

of L) L.L = L^2 L = L^1 $L^0 = \{\epsilon\}$

Kleene closure operation

The closure or (Kleene - star operation) "*" is defined on language L and will be denoted by L* and consists of all strings that can be obtained by concatenating any number of strings from L.

Let L be a language also $L^0 = \{ \epsilon \}$ and $L^i = L.L^{i-1}$ for $i \ge 1$, where $L^2 = L.L$ means that the language string is concatenated in various possible combinations.

Then Kleene closure of L denoted by L* where,

$$L^* = \bigcup_{i=0}^{\infty} L^i = L^0 U L^1 U L^2 U....$$

and

 $L^{+} = \bigcup_{i=1}^{\infty} L^{i} = L^{1} U L^{2} U L^{3} U....$

where L^+ is the set of all strings obtainable by concatenating one or more

elements of L and L⁺ = L* - { ϵ }

Example3:

Let L= {a, b} find $\bigcup_{i=0}^{3} L^{i}$

$$U_{i=0}^{3} L^{i} = L^{0} U L^{1} U L^{2} U L^{3}$$

$$= \{\epsilon\} U \{a, b\} U \{a, b\}^{2} U \{a, b\}^{3}$$

$$= \{\epsilon\} U \{a, b\} U \{a, b\} . \{a, b\} U \{a, b\} . \{a, b\} . \{a, b\}$$

$$= \{\epsilon\} U \{a, b\} U \{aa, ab, ba, bb\} U \{a, b\} . \{a, b\} . \{a, b\}$$

$$= \{\epsilon\} U \{a, b\} U \{aa, ab, ba, bb\} U \{a, b\} . \{aa, ab, ba, bb\}$$

$$= \{\epsilon\} U \{a, b\} U \{aa, ab, ba, bb\} U \{aaa, aab, aba, bab, baa, bab, bba, bbb\}$$

 $= \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb \}$

Theorem-1

Prove that L+ = L.L* Ans/ L+ = $\bigcup_{i=1}^{\infty} L^i = L^1 \cup L^2 \cup L^3 \cup \dots$ L.L* = L. $\bigcup_{i=0}^{\infty} L^i = \bigcup_{i=0}^{\infty} L^{i+1} = \bigcup_{i=1}^{\infty} L^i = L^+$

Theorem-2

Prove that $L^* = L^*.L^*$ Ans/ $L^* = \bigcup_{i=0}^{\infty} L^i = (L^0 U L^1 U L^2 U.....)$

$$L^*.L^* = \bigcup_{i=0}^{\infty} L^i. \bigcup_{i=0}^{\infty} L^i$$
$$= \bigcup_{i=1}^{\infty} L^{2i}$$
$$= L^0. L^2. L^4. \dots$$
$$= L^*$$

<u>Theorem-3</u>

Prove that $(L^*)^* = L^*$

Ans/

 $(L^*)^* = (\bigcup_{i=0}^{\infty} L^i)^* = \bigcup_{i=0}^{\infty} (\bigcup_{i=0}^{\infty} L^i)^i$

$$= (\bigcup_{i=0}^{\infty} L^{i})^{0} U (\bigcup_{i=0}^{\infty} L^{i})^{1} U (\bigcup_{i=0}^{\infty} L^{i})^{2} U \dots$$

= $\varepsilon U (L^{0} U L^{1} U L^{2} U \dots) U (L^{0} U L^{1} U L^{2} U \dots)^{2} U \dots$
= $\varepsilon U L^{*} U (L^{*})^{2} U \dots$
= L^{*}